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The focusing properties of cylindrically bent crystals in symmetric Laue

geometry are discussed using the formalism of Fresnel diffraction and the

analytical solution of the Takagi–Taupin equations for a point source on the

entrance surface. The existence of a focal shift in the dynamical focusing effect is

pointed out and discussed. The present theoretical framework is applied to

experiments performed at the energy-dispersive X-ray absorption spectroscopy

beamline of the European Synchrotron Radiation Facility concerning the

position and the size of the focal spot obtained from a polychromatic source at a

large distance from the bent crystal.

1. Introduction

Bent crystal plates in Laue geometry are frequently used at

synchrotron beamlines as focusing elements, forming a

demagnified image of a distant source. The present theoretical

framework was developed for the symmetric Laue case with

the purpose of comparing theoretical predictions with

experimental results obtained by some of the authors (D.

Bhattacharyya, O. Mathon and S. Pascarelli).

Rays of different energies coming out of a point source and

in exact Bragg incidence on a flat crystal in transmission

geometry converge downstream of it in the point symmetric to

the source with respect to the crystal mid-plane. In the case of

a cylindrically bent crystal, this ‘polychromatic focusing’

effect, which does not depend to a first approximation on the

crystal thickness, occurs under the condition (Chukhovskii &

Krisch, 1992)

1

q
�

1

p
¼

2

R cos �B

; ð1Þ

where p is the source-to-crystal distance, q is the crystal-to-

focus distance, �B is the Bragg angle and R is the radius of

curvature of the crystal, which is taken as positive in the

present investigation, that is to say the source faces the convex

side of the crystal. In the design of an energy-dispersive

X-ray absorption spectroscopy beamline, one uses a position-

sensitive detector downstream of a sample placed in the focal

position. In this way, the absorption spectrum of the sample

can be recorded over the whole energy range of the reflected

beam (Hagelstein et al., 1995).

The optical performance of such a crystal (polychromator),

in particular the size of the focal spot, depends on the crystal

thickness via the ‘dynamical focusing’ effect, which was

described decades ago by Afanasev & Kohn (1977) and

Aristov et al. (1978, 1980) in the flat crystal case, and by

Kushnir & Suvorov (1982) in the bent crystal case; see also the

book by Pinsker (1978). According to Mocella et al. (2004,

2008), the focal size should be minimized when the dynamical

and polychromatic foci are made to coincide by the choice of

the crystal thickness (see also Sanchez del Rio et al., 1994).

A novel aspect of the theory of dynamical focusing is

reported in the present study and regards a theoretical

framework explaining a non-negligible displacement of the

focus position (focal shift) as well as the influence of anom-

alous absorption; this is briefly presented in the flat crystal

case for the sake of clarity in x2. Our main contribution is,

however, to show that the wavefunction downwards from a

bent crystal is not obtained by successive convolutions, owing

to the analytical form of the phase factor by which the

propagator of a bent crystal differs from that of the flat crystal

case. This finding has lead us not to use the Fourier transform

formalism which is convenient for flat crystals, as shown for

instance by Kohn et al. (2000).

The calculations are instead carried out following the

geometric scheme depicted in Fig. 1. Let us consider a

monochromatic point source S and let O be the point of the

crystal entrance surface such that SO is a ray in exact Bragg

incidence, and let � be the point at the crystal exit surface of

this ray. With � being the wavelength and SO = p, the incident

amplitude along the axis O� perpendicular to SO is

Dincð�Þ ¼ expði��2=�pÞ=ði�pÞ
1=2; ð2Þ

which becomes a delta function �ð�Þ as p! 0 (point source on

the crystal surface). The crystal propagator is expressed in

such a form as to obtain the Bragg-reflected amplitude D(u)

along the axis �u perpendicular to the Bragg direction �q; the

reflected amplitude at any point downstream from the crystal

can be then calculated by a Fresnel diffraction integral.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dm5031&bbid=BB23
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2. The displacement of the dynamical focus and the
influence of anomalous absorption

Let us initially consider the case of a point source on the

entrance surface of a flat crystal. The reflected amplitude DðuÞ

along the axis �u in vacuum is obtained by setting

so;h ¼ tða� uÞ=2a cos �B in the function Jo½kð�h�hsoshÞ
1=2
�;

k ¼ 2�=�; so;h are oblique coordinates along the incident and

Bragg directions, respectively, with a common origin in O; �h;h

are the Fourier coefficients of the crystal susceptibility; t is the

crystal thickness; and a ¼ t sin �B is the half-width of the

reflected beam (see Fig. 1). The Bessel function argument

becomes then Zða2 � u2Þ
1=2, with Z ¼ kð�h�hÞ

1=2= sin 2�B, the

real part of Z being chosen as positive: Re Z ¼ Zre > 0. For

juj � a and jZaj � 1, by using the asymptotic expression

DðuÞ ’ ½2�Zða2
� u2
Þ

1=2
�
�1=2

�
exp½iZða2

� u2
Þ

1=2
� ið�=4Þ�

þ exp½�iZða2
� u2
Þ

1=2
þ ið�=4Þ�

�
ð3Þ

and also ða2 � u2Þ
1=2
’ a� u2=2a, one obtains

DðuÞ ’ ð2�iZaÞ
�1=2

�
exp iZa� i

Zu2

2a

� �

þ i exp �iZaþ i
Zu2

2a

� ��
: ð4Þ

The phase terms expð�iZreu2=2aÞ are the transmission func-

tions of cylindrical lenses, convergent with the ‘�’ sign or

divergent with the ‘+’ sign (see e.g. Goodman, 1968), with

paraxial focal distance

q0 ¼
�

�

2a

Zre

¼
a sin 2�B

Reð�h�hÞ
1=2
: ð5Þ

Expression (5) is well known and is generally obtained by

using a series expansion of the spherical wave in plane waves

(Kohn et al., 2000).

We are mainly interested in the convergent term, which is

the first one in equations (3) and (4). According to equation

(3), the corresponding phase modulation is

’ðuÞ ¼ Zreða
2
� u2
Þ

1=2
’ Zre a�

u2

2a
�

u4

8a3
þ . . .

� �
:

This phase modulation is responsible for the u-dependent

angular deviation:

�ðuÞ ¼
�

2�

d’

du
¼ �

u

q0

1þ
u2

2a2
þ . . .

� �
;

the modulus of which is larger than ju=q0j. The rays around

u ¼ 0 cut �q at distances shorter than q0 and are tangential to

the caustic curve shown schematically in Fig. 1, its cusp being

the paraxial focus at the distance q0; this is indeed a cylindrical

aberration effect. The point of maximum intensity along the

optical axis �q, considered as the ‘effective focus’, is expected

to be at an ‘effective focal distance’ �q0, with 0<�< 1.

Numerical calculations of the intensity distribution along the

optical axis �q, according to the integral expression

IðqÞ ¼
1

�q

Za

�a

du exp
i�u2

�q

� �
J0½Zða

2
� u2
Þ

1=2
�

������
������

2

;

allow the determination of the parameter �, which is a func-

tion of the complex parameter aZ ¼ �tð�h� �hhÞ
1=2=� cos �B. In

the case of a non-absorbing crystal, aZ is real and equal to

�t=�0, where �0 is the Pendellösung distance. We have found

numerically that � increases from � ’ 0:60 for aZ ¼ 10 to

� ’ 0:80 for aZ ¼ 40. The focusing condition can be written

as q ¼ ��q0 in order to include the virtual focus corre-

sponding to the divergent term of equation (4).

Formula (4) also gives the opportunity to discuss the

influence of anomalous absorption (Borrmann effect) in a new

and straightforward manner. Clearly, due to the phase term

expð�iZaÞ, if the real and imaginary parts of Z are positive,

the modulus of the convergent term in equation (4) is

decreased, whereas that of the divergent term is increased.

This is an unfavourable condition for achieving a good

focusing of the reflected wave. A favourable condition would

be instead Re Z> 0 and Im Z< 0 for the first term in equation

(4) or Re Z< 0 and Im Z> 0 for the second term in equation

(4), namely that the real and the imaginary parts of ð�h� �hhÞ
1=2

should have different signs. This condition can be most simply

formulated as Im ð�h�hÞ< 0.

One can write Im�h� �hh ¼ 2j�rhjj�ihj cosð’rh � ’ihÞ, where

�rh and �ih are, respectively, the Fourier coefficients of the

real and imaginary parts of the complex susceptibility and

are written in the form �rh ¼ j�rhj expði’rhÞ and �ih ¼

j�ihj expði’ihÞ. In the case of a centrosymmetric crystal, the

cosine term is equal to�1 and is always equal to 1 for a mono-

atomic crystal. A counterexample would be the 222 reflection

of calcite, CaCO3 (Authier, 2005). It would be interesting to
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Figure 1
Illustration of the optical setup under consideration, showing the
different systems of coordinates used in the text. The O� axis is
perpendicular to Oso; the �u axis is perpendicular to �q and to Osh. The
shape of the caustic curve is schematically shown on the right-hand side.



investigate experimentally the dynamical focusing effect in

such a case, i.e. under conditions of strong anomalous

absorption.

3. The crystal propagator derived from the Takagi–
Taupin equations

Let us use two mutually orthogonal axes (O	, Oz) tangential

and normal, respectively, to the crystal surface. The diffraction

vector of modulus h ¼ 2k sin �B is antiparallel to O	, as shown

in Fig. 1. Upon bending, the length of the neutral surface of

radius R is not changed, whereas the lengths of the entrance

and exit surfaces are multiplied respectively by ð1� t=2RÞ.

The component of the lattice displacement along O	 is

Uð	; zÞ ¼ 	ðt � 2zÞ=2R. In terms of the oblique coordinates

so;h ¼ ðz sin �B � 	 cos �BÞ= sin 2�B we obtain

h �Uð	; zÞ ¼ 	
2z� t

R
k sin �B ¼ ’ðsoÞ � ’ðshÞ

with

’ðso;hÞ ¼
k sin �B

R
so;hðso;h sin 2�B � t sin �BÞ: ð6Þ

Using the notation r for the position vector of an arbitrary

point in the crystal, the total wavefield can be expressed as

expðiko � rÞ½Doðso; shÞ þ expðih � rÞDhðso; shÞ�, ko being the

vacuum wavevector parallel to Oso. The amplitudes

Do;hðso; shÞ are solutions of the Takagi–Taupin equations

(TTEs) (Takagi, 1962, 1969; Taupin, 1964, 1967)

�

�

@Do

@so

¼ i�0Doðso; shÞ þ i� �hhDhðso; shÞ exp½i’ðsoÞ � i’ðshÞ�;

�

�

@Dh

@sh

¼ i�0Dhðso; shÞ þ i�hDoðso; shÞ exp½i’ðshÞ � i’ðsoÞ�:

ð7Þ

The incident wave is written as expðiko � rÞDincðso; shÞ. Equa-

tions (7) reduce to the TTEs for a flat crystal by using

Eoðso; shÞ ¼ Doðso; shÞ exp½i’ðshÞ�;

Ehðso; shÞ ¼ Dhðso; shÞ exp½i’ðsoÞ�;

the incident amplitude transforming into Eincðso; shÞ ¼

Dincðso; shÞ exp½i’ðshÞ�.

In the case of a point source in O on the crystal entrance

surface, Dincðso; shÞ and Eincðso; shÞ are both equal to the delta

function �ðshÞ and Ehðso; shÞ reduces to the well known

expression for the flat crystal case (Kato, 1961; Pinsker, 1978;

Authier, 2005). This means that

Dhðso; shÞ ¼
i��h

�
Jo kð�h� �hhsoshÞ

1=2
	 


	 exp i
�

�
�0ðso þ shÞ � i’ðsoÞ

h i
: ð8Þ

In the more general case of a distant source, corresponding

to a distribution of coherent elementary point sources on

the entrance surface, we need the analytical form of Dhðso; shÞ

for a point source on the entrance surface such that its

oblique coordinates (
o; 
h) are not equal to 0. We then set

Dincðso; shÞ ¼ �ðsh � 
hÞ and consequently Eincðso; shÞ ¼

�ðsh � 
hÞ exp½i’ð
hÞ�. We thus obtain

Dhðso; shÞ ¼ Ehðso; shÞ exp½�i’ðsoÞ�

¼
i��h

�
J0 kð�h� �hhs0os0hÞ

1=2
	 


	 exp i
��0

�
ðs0o þ s0hÞ þ i’ð
hÞ � i’ðsoÞ

h i
; ð9Þ

where the notation s0o;h ¼ so;h � 
o;h is used. Relations (8) and

(9) are used in the next section to obtain the crystal propa-

gator linking the reflected amplitude DðuÞ along the �u axis

with the incident amplitude Dincð�Þ along the O� axis; we shall

omit the factor ði��h=�Þ exp½i��0ðs
0
o þ s0hÞ=��, which is a

constant for a crystal plate of uniform thickness.

4. Dynamical focusing by a cylindrically bent crystal

4.1. Point source on the entrance surface

Consider the points N and Q on the same line parallel to

Osh, N being on the axis Ou, Q on the curved exit surface (see

Fig. 1). These points have the same coordinate so ¼

ðaþ uÞ= sin 2�B, where u denotes the position of N on the axis

�u. It is convenient to write the product ½sosh�Q as a poly-

nomial function of degree 2 in u. The point Q being

the intersection of the crystal boundary curve z ¼

t þ 	2=2R cos �B by the straight line z sin �B þ 	 cos �B

¼ aþ u, we can calculate the rectangular coordinates

½	�Q ¼
u

cos �B

�
u2 sin �B

2Rcos3�B

þ . . . and

½z�Q ¼ t þ
u2

2Rcos2�B

þ . . .

and consequently the oblique coordinates

so

	 

Q
¼

aþ u

sin 2�B

and

sh

	 

Q
¼ a� uþ

u2 sin �B

Rcos2�B

þ . . .

� �
ðsin 2�BÞ

�1:

Hence

½sosh�Q ¼
aþ u

sin 2�B

a� u

sin 2�B

þ
u2

2Rcos3�B

� �

’
a2 � u2 þ u2ða tan �BÞ=ðR cos �BÞ

sin22�B

:

The last term in the numerator can be neglected since

a tan �B � R cos �B. This approximation indicates that the

effects of the curvature of the exit surface are negligibly small

in the calculation of ½sosh�Q.

Formula (6) shows that ½’ðsoÞ�Q ’ �uðaþ uÞ=�R cos �B,

then, according to equation (8), the reflected amplitude along

the axis �u is

DðuÞ ¼ DhðsoshÞQ ¼ J0½Zða
2 � u2Þ

1=2
� exp �i

�uðaþ uÞ

�R cos �B

� �
:

ð10Þ
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The linear phase term expð�i�ua=�R cos �BÞ accounts for the

uniform angular deviation �� ¼ a=2R cos �B of the reflected

beam. The focusing condition

1

q
�

1

R cos �B

¼ �
1

�q0

ð11Þ

is derived by the same approach used in x2, by taking into

account the additional phase term expð�i�u2=�R cos �BÞ. It

should be noted that � does not depend on the crystal

curvature. A real focus is obtained if the value of q as given by

equation (11) is positive. Since q0 [see equation (5)] and

R cos �B are both positive, we obtain:

(a) If R cos �B >�q0, there is one real focus at a distance

q1 ¼ �q0R cos �Bð�q0 þ R cos �BÞ
�1.

(b) If R cos �B <�q0, there are two real foci at distances

q1;2 ¼ �q0R cos �Bð�q0 � R cos �BÞ
�1.

This is similar to the results obtained by Kushnir & Suvorov

(1982).

4.2. Distant point source

For a point M on the O� axis and the point P on the curved

entrance surface, with MP parallel to SO, one can easily find

½sh�M ¼ ½sh�P ¼ ��= sin 2�B, where � denotes the position of

the point M on the axis O� (see Fig. 1). Using equation (6),

we obtain ½’ðshÞ�M;P � ½’ðsoÞ�N;Q ¼ ð�=�R cos �BÞ½�ð� þ aÞ

� uðuþ aÞ�. Bearing in mind equation (2) for the incident

amplitude, the reflected amplitude along the �u axis is the

integral expression

DðuÞ ¼

Zuþa

u�a

d�

ði�pÞ
1=2

exp

�
i��2

�p

�
exp

�
i�
�ð� þ aÞ � uðuþ aÞ

�R cos �B

�

	 J0 Z½a2
� ðu� �Þ2�1=2

� �
;

where the product of the two last factors in the integrand is the

crystal propagator. We point out that this is not a function of

the difference ðu� �Þ only; in other words, this propagator is

not space-invariant; the propagation through the bent crystal

is not a convolution, in contrast to the propagation through a

flat crystal. This can be understood physically by regarding the

fact that if the incident monochromatic wave is a plane one,

the Bragg-reflected wave is not a plane wave, because the

departure from the Bragg condition varies continuously along

the entrance surface of the bent crystal.

Using the integration variable v ¼ u� � and introducing

the definition p�1
e ¼ p�1 þ ðR cos �BÞ

�1, we obtain

DðuÞ ¼ exp
�i�u2

�R cos �B

� � Za

�a

dv

ði�pÞ
1=2

exp

�
i�ðu� vÞ

2

�pe

�
i�av

�R cos �B

�
J0 Zða2 � v2Þ

1=2
	 


: ð12Þ

We also define qe to be such that qe
�1 ¼ q�1 � ðR cos �BÞ

�1

and note that p�1
e þ q�1

e ¼ p�1 þ q�1. The amplitude distri-

bution at the distance q is obtained by means of the Fresnel

diffraction integral

Dðx; qÞ ¼

Z1
�1

du

ði�qÞ1=2
exp i�

ðx� uÞ2

�q

� �
DðuÞ;

where DðuÞ is in the form given by equation (12) and x is a

coordinate along an axis perpendicular to �q (see Fig. 1). The

double integral is simplified by performing the integration

over u as

Z1
�1

du exp
i�

�

Lu2

pq
� 2u

v

pe

þ
x

q

� �� �� �

¼
i�pq

L

� �1=2

exp �i
�pq

�L

v

pe

þ
x

q

� �2
" #

;

having denoted L ¼ pþ q; we also define Le ¼ pe þ qe and

we obtain the general formula

Dðx; qÞ ¼
expði�x2=�LÞ

ð�LÞ
1=2

Za

�a

dv exp

�
i�

�

�
v2

Le

�
av

R cos �B

�
2xvqe

qLe

��
J0½Zða

2
� v2
Þ

1=2
� ð13Þ

and the simple focusing condition

pe þ qe ¼ ��q0: ð14Þ

This novel (to the best of our knowledge) formula is a

clear generalization of the focusing condition in the case of a

flat crystal, which under the same conditions would be

pþ q ¼ ��q0. The focal distances are thereby

q1 ¼
R cos �Bð�q0 � peÞ

R cos �B þ �q0 � pe

; q2 ¼
R cos �Bð�q0 þ peÞ

�q0 þ pe � R cos �B

: ð15Þ

Since a real focus corresponds to a positive value of q1 or of q2,

we obtain:

(a) no real focus if �q0 < min½pe;R cos �B � pe� (note that

0< pe <R cos �B);

(b) one real focus if �q0 has a value between pe and

R cos �B � pe; and

(c) two real foci if �q0 > max½pe;R cos �B � pe�.

4.3. Coincidence of dynamical and polychromatic focusing
and comparison with the approach by Mocella et al. (2004,
2008)

The polychromatic focusing condition (1) can be expressed

as R cos �B¼2pq=ðp� qÞ, which implies pe¼qe¼2pq=ðpþ qÞ.

Equation (13) can then be simplified as follows:

Dðx; qÞ ¼
expði�x2=�LÞ

ð�LÞ
1=2

Za

�a

dv J0½Zða
2
� v2
Þ

1=2
�

	 exp

�
i�

v2L� 2vðap� aqþ 2pxÞ

4�pq

�
: ð16Þ

The intensity profile is symmetric with respect to x ¼

�aðp� qÞ=2p. The focusing condition is 4pq ¼ �qoðpþ qÞ.

There is one real focus at the distance

research papers

94 J.-P. Guigay et al. � Bent crystal polychromators Acta Cryst. (2013). A69, 91–97



q1 ¼
�q0p

4p� �q0

’
�q0

4
; ð17Þ

where the last expression is valid for p� q0, a condition

generally satisfied by synchrotron experimental setups.

Note that the crystal curvature is such that R cos �B ¼

2pq1=ðp� q1Þ ¼ �q0 p=ð2p� �q0Þ ’ �q0=2.

In the approach of Mocella et al. (2004, 2008), the illumi-

nation on the crystal entrance surface is considered to be

incoherent, as a consequence of polychromaticity. There

would therefore be no influence of the source-to-crystal

distance on the dynamical focusing behaviour. Propagation in

the bent crystal is regarded to be the same as in a flat crystal, as

if the displacement vector were perpendicular to the diffrac-

tion vector, which is true only along the neutral surface. The

effect of bending is a phase factor related to the curvature of

the exit surface. Using the dynamical focusing condition

q�1 � ðR cos �BÞ
�1
¼ q�1

0 , which is the same as in x4.1 with the

sign ‘+’ and with � ¼ 1, we obtain the focusing condition

2pqðpþ qÞ
�1
¼ q0 for coincidence of the dynamical and

polychromatic focusing. The focus position is then obtained as

q1 ¼
q0p

2p� q
’

q0

2
; ð18Þ

which is in strong disagreement with formula (17) of the

present formulation. Actually, the assumption of effective

incoherence, based on considering the crystal propagator to be

nearly independent of �, is justified for the calculation of the

reflected intensity distribution close to the crystal exit surface.

This is, however, not the case for the in-vacuum propagation

after the crystal.

5. Application to experiments

We have applied the present theoretical framework and in

particular equation (16) to analyse in a computational manner

a series of experiments performed at the energy-dispersive

EXAFS beamline ID24 of the ESRF, using the Si 111 reflec-

tion of symmetrically cut polychromators in Laue geometry

with crystal thicknesses of 200 or 300 mm and mean photon

energies 8.3 and 20.0 keV. The horizontally diffracting crystal

was placed in an adjustable bender at a fixed distance p =

29.7 m from a secondary source produced by a horizontally

focusing mirror acting on the primary beam. A detector was

placed at a variable distance q downstream from the crystal,

the crystal curvature being adjusted experimentally to mini-

mize the beam size in order to get the focal spot matching the

polychromatic focusing conditions for each value of q. No

auxiliary measurement of the crystal curvature was made. The

experiment’s purpose was to detect a minimum of the adjusted

beam size for a value of q corresponding to the polychromatic

and dynamical focusing coincidence: following the approach

by Mocella et al. (see x4.3), this was expected to occur for

q ’ q0=2, as predicted by equation (18). The FWHMs shown

in Figs. 2 and 3 were obtained via a Gaussian–Lorentzian

curve fitting of the signal recorded while scanning the focal

spot with a slit of approximately 10 mm aperture. In order to

obtain the actual FWHM of the beam one should deconvolve

the recorded signal taking into account the intrinsic width of

the slit. The initial goal of the experiment could not be met

since, for each combination of the photon energy and the

crystal thickness, a continuous decrease of the measured beam

size was detected for q decreasing from about 1500 to 600 or

700 mm (see Figs. 2 and 3). Further reduction of q was not

possible due to the mechanical constraints of the beamline

setup. In the following, we interpret the experimental results

within the present theoretical framework.

Let us first consider the experiment at 20 keV. For the

200 mm thick crystal (Fig. 2), the experimental findings show

that the minimum spot size is found at a distance of less

than 600 mm, i.e. a trend which appears to be in qualitative

agreement with the calculations predicting a distance of

500 mm (cf. Fig. 4 and Table 1). For the 300 mm crystal, the

calculations (Fig. 5) predict a distance of 820 mm, which is

inside the experimental range, so that the minimum should

have been observed. The failure to detect the minimum can be

explained by an additional random deformation of the perfect

bent crystal due to internal stresses induced by the bending
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Figure 2
Beam-size measurements for bent Si 111 crystals of two different
thicknesses and a polychromatic beam of mean energy 20.0 keV, p =
29 700 mm.

Figure 3
Beam-size measurements for a bent Si 111 crystal and a polychromatic
beam of mean energy 8.3 keV, p = 29 700 mm.



action and by the heat load; this may result in random fluc-

tuations in the wavefront converging from the crystal to the

focus and consequently cause a focus broadening which would

increase with the distance q. This is likely to produce a shift of

the minimum spot size towards smaller q values; it can also

explain the fact that the measured minimum spot sizes are

about twice as large as those predicted by the calculations

shown in Figs. 4 and 5. It should be mentioned that the energy-

dependent numerical values of the crystal susceptibility used

in the calculations were taken from the database of optical

constants included in the software package XOP (Sanchez del

Rio, 2011).

There is apparently no significant spot broadening effect

associated with the polychromatic focusing process: the width

of the beam hitting the crystal is several millimetres, so the

crystal acts as a polychromator diffracting an energy band as

large as about 1000 eV; when a narrow slit placed close to the

crystal in order to select a limited energy band is moved across

the incident beam, the recorded focal spots do not show any

significant lateral displacement; this shows that the bending

device allows one to approach the following ideal conditions

for polychromatic focusing in symmetric Laue geometry: a

focusing bent crystal in the form of a hyperbola with the

source at one of its foci (Hrdy, 1990).

For an energy of 8.3 keV, the calculated intensities at the

symmetry centre show a peculiar behaviour as a function of q

(Fig. 6) when compared to the calculations for the 20.0 keV

measurements (Figs. 4a and 5a). The related lateral beam

profiles are rapidly oscillating and also differ significantly from

the corresponding profiles at 20 keV. This is related to

anomalous absorption, as discussed in x2. The interference of
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Table 1
Experimental results and computational results carried out according to
equation (16).

There are no values of ð�q0=4Þcalc for the 8.3 keV experiments (the reader is
referred to the explanation in the text). The numerical results are shown in
Figs. 4, 5 and 6.

X-ray energy
(keV)

Crystal
thickness (mm)

(�q0/4)exp

(mm)
q0

(mm)
(�q0/4)calc

(mm)

20.0 300 
600 4500 820
20.0 200 
600 3000 500

8.3 300 
800 4300
8.3 200 
600 2900

Figure 4
Calculated intensity curves for a bent Si 111 crystal, energy = 20 keV,
crystal thickness = 200 mm, p = 29 700 mm, �B ¼ 5:67�, �h�h ¼

1:684	 10�12 þ i 1:666	 10�14, q0 = 2997 mm. (a) Intensity at the
symmetry centre versus q showing the intensity maximum at q =
500 mm, (b) intensity profiles for q = 500 mm (solid curve) and for
q = q0/4 = 750 mm (dashed curve). Note that � = 0.67.

Figure 5
Calculated intensity curves for a bent Si 111 crystal, energy = 20 keV,
crystal thickness = 300 mm, q0 = 4500 mm, the remaining parameters are
the same as for Fig. 4. (a) Intensity at the symmetry centre versus q
showing the intensity maximum at q = 820 mm, (b) intensity profiles for q
= 820 mm (solid curve) and for q = q0/4 = 1125 mm (dashed curve). Note
that � = 0.73.



the convergent and divergent wave components is a minor

effect at 20 keV, because the spreading out of the divergent

component causes its amplitude to be much smaller than that

of the convergent component in the focal region; at 8.3 keV,

the amplitude of the divergent component is enhanced with

respect to that of the convergent one, as a result of anomalous

absorption, and their interference effect becomes significant,

in spite of the spreading out of the divergent component.

6. Concluding remarks

The present approach to focusing via a bent crystal in

symmetric Laue geometry is mainly analytical, in contrast e.g.

to the approach of Nesterets & Wilkins (2008), which is based

on a numerical solution of the TTEs.

Equation (4), which results directly from the spherical-wave

theory (Kato, 1961), allows one to explain in a very simple way

the dynamical focusing effect and the influence of anomalous

absorption on it. It is shown that the bent crystal propagator is

not space-invariant and a new formulation of the dynamical

focusing is given in terms of only two quantities, which are the

effective focal distance of the flat crystal case and R cos �B,

which is the product of the radius of curvature and the cosine

of the Bragg angle. This novel formulation is applied to the

case in which dynamical and polychromatic focusing coincide

and provides a comprehensive interpretation of the experi-

mental results, ensuring a far better agreement compared to

former computational approaches.

In a future study we intend to propose a generalization of

the present theoretical approach to the case of asymmetric

crystal reflections, involving the use of confluent hypergeo-

metric functions as the solutions of the TTEs (Petrashen’,

1974; Chukhovskii & Petrashen’, 1977).

We are greatly indebted to the referees for their comments.

Following their recommendations, we have stressed which

results are novel compared to the existing literature on this

subject.
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Figure 6
Calculated intensity at the symmetry centre versus q for a bent Si 111
crystal, energy 8.3 keV, p = 29 700 mm, �B ¼ 13:73�, �h�h ¼

5:781	 10�11 þ i 3:260	 10�12. (a) Crystal thickness = 200 mm, (b)
crystal thickness = 300 mm.
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